Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pulse-chase SILAC-based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes.

Identifieur interne : 000052 ( Main/Exploration ); précédent : 000051; suivant : 000053

Pulse-chase SILAC-based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes.

Auteurs : Daniel F. Bogenhagen [États-Unis] ; John D. Haley [États-Unis]

Source :

RBID : pubmed:31974161

Descripteurs français

English descriptors

Abstract

Mammalian mitochondria assemble four complexes of the respiratory chain (RCI, RCIII, RCIV, and RCV) by combining 13 polypeptides synthesized within mitochondria on mitochondrial ribosomes (mitoribosomes) with over 70 polypeptides encoded in nuclear DNA, translated on cytoplasmic ribosomes, and imported into mitochondria. We have previously observed that mitoribosome assembly is inefficient because some mitoribosomal proteins are produced in excess, but whether this is the case for other mitochondrial assemblies such as the RCs is unclear. We report here that pulse-chase stable isotope labeling with amino acids in cell culture (SILAC) is a valuable technique to study RC assembly because it can reveal considerable differences in the assembly rates and efficiencies of the different complexes. The SILAC analyses of HeLa cells indicated that assembly of RCV, comprising F1/Fo-ATPase, is rapid with little excess subunit synthesis, but that assembly of RCI (i.e. NADH dehydrogenase) is far less efficient, with dramatic oversynthesis of numerous proteins, particularly in the matrix-exposed N and Q domains. Unassembled subunits were generally degraded within 3 h. We also observed differential assembly kinetics for individual complexes that were immunoprecipitated with complex-specific antibodies. Immunoprecipitation with an antibody that recognizes the ND1 subunit of RCI co-precipitated a number of proteins implicated in FeS cluster assembly and newly synthesized ubiquinol-cytochrome c reductase Rieske iron-sulfur polypeptide 1 (UQCRFS1), the Rieske FeS protein in RCIII, reflecting some coordination between RCI and RCIII assemblies. We propose that pulse-chase SILAC labeling is a useful tool for studying rates of protein complex assembly and degradation.

DOI: 10.1074/jbc.RA119.011791
PubMed: 31974161
PubMed Central: PMC7049976


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pulse-chase SILAC-based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes.</title>
<author>
<name sortKey="Bogenhagen, Daniel F" sort="Bogenhagen, Daniel F" uniqKey="Bogenhagen D" first="Daniel F" last="Bogenhagen">Daniel F. Bogenhagen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651 daniel.bogenhagen@stonybrook.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pharmacological Sciences, Stony Brook University, Stony Brook</wicri:regionArea>
<wicri:noRegion>Stony Brook</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haley, John D" sort="Haley, John D" uniqKey="Haley J" first="John D" last="Haley">John D. Haley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Stony Brook University, Stony Brook, New York 11794-8691.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Pathology, Stony Brook University, Stony Brook</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Proteomics Center, Stony Brook University, Stony Brook, New York 11794-8691.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Proteomics Center, Stony Brook University, Stony Brook</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31974161</idno>
<idno type="pmid">31974161</idno>
<idno type="doi">10.1074/jbc.RA119.011791</idno>
<idno type="pmc">PMC7049976</idno>
<idno type="wicri:Area/Main/Corpus">000158</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000158</idno>
<idno type="wicri:Area/Main/Curation">000158</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000158</idno>
<idno type="wicri:Area/Main/Exploration">000158</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pulse-chase SILAC-based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes.</title>
<author>
<name sortKey="Bogenhagen, Daniel F" sort="Bogenhagen, Daniel F" uniqKey="Bogenhagen D" first="Daniel F" last="Bogenhagen">Daniel F. Bogenhagen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651 daniel.bogenhagen@stonybrook.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pharmacological Sciences, Stony Brook University, Stony Brook</wicri:regionArea>
<wicri:noRegion>Stony Brook</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haley, John D" sort="Haley, John D" uniqKey="Haley J" first="John D" last="Haley">John D. Haley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Stony Brook University, Stony Brook, New York 11794-8691.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Pathology, Stony Brook University, Stony Brook</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Proteomics Center, Stony Brook University, Stony Brook, New York 11794-8691.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Proteomics Center, Stony Brook University, Stony Brook</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Culture Techniques (methods)</term>
<term>Cell Nucleus (genetics)</term>
<term>DNA (genetics)</term>
<term>Electron Transport (genetics)</term>
<term>Electron Transport Complex I (chemistry)</term>
<term>Electron Transport Complex I (genetics)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Isotope Labeling (methods)</term>
<term>Mitochondria (genetics)</term>
<term>Mitochondrial Membranes (metabolism)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Ribosomes (metabolism)</term>
<term>NADH Dehydrogenase (chemistry)</term>
<term>NADH Dehydrogenase (genetics)</term>
<term>Peptides (genetics)</term>
<term>Protein Transport (genetics)</term>
<term>Proton-Translocating ATPases (chemistry)</term>
<term>Proton-Translocating ATPases (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (génétique)</term>
<term>Cellules HeLa (MeSH)</term>
<term>Complexe I de la chaîne respiratoire (composition chimique)</term>
<term>Complexe I de la chaîne respiratoire (génétique)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Humains (MeSH)</term>
<term>Marquage isotopique (méthodes)</term>
<term>Membranes mitochondriales (métabolisme)</term>
<term>Mitochondries (génétique)</term>
<term>NADH dehydrogenase (composition chimique)</term>
<term>NADH dehydrogenase (génétique)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Peptides (génétique)</term>
<term>Proton-Translocating ATPases (composition chimique)</term>
<term>Proton-Translocating ATPases (génétique)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Ribosomes mitochondriaux (métabolisme)</term>
<term>Techniques de culture cellulaire (méthodes)</term>
<term>Transport d'électrons (génétique)</term>
<term>Transport des protéines (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Electron Transport Complex I</term>
<term>NADH Dehydrogenase</term>
<term>Proton-Translocating ATPases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA</term>
<term>Electron Transport Complex I</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>NADH Dehydrogenase</term>
<term>Peptides</term>
<term>Proton-Translocating ATPases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Complexe I de la chaîne respiratoire</term>
<term>NADH dehydrogenase</term>
<term>Proton-Translocating ATPases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Electron Transport</term>
<term>Mitochondria</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN</term>
<term>Complexe I de la chaîne respiratoire</term>
<term>Ferrosulfoprotéines</term>
<term>Mitochondries</term>
<term>NADH dehydrogenase</term>
<term>Noyau de la cellule</term>
<term>Peptides</term>
<term>Proton-Translocating ATPases</term>
<term>Protéines mitochondriales</term>
<term>Transport d'électrons</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondrial Membranes</term>
<term>Mitochondrial Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Cell Culture Techniques</term>
<term>Isotope Labeling</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Membranes mitochondriales</term>
<term>Ribosomes mitochondriaux</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Marquage isotopique</term>
<term>Techniques de culture cellulaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>HeLa Cells</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mammalian mitochondria assemble four complexes of the respiratory chain (RCI, RCIII, RCIV, and RCV) by combining 13 polypeptides synthesized within mitochondria on mitochondrial ribosomes (mitoribosomes) with over 70 polypeptides encoded in nuclear DNA, translated on cytoplasmic ribosomes, and imported into mitochondria. We have previously observed that mitoribosome assembly is inefficient because some mitoribosomal proteins are produced in excess, but whether this is the case for other mitochondrial assemblies such as the RCs is unclear. We report here that pulse-chase stable isotope labeling with amino acids in cell culture (SILAC) is a valuable technique to study RC assembly because it can reveal considerable differences in the assembly rates and efficiencies of the different complexes. The SILAC analyses of HeLa cells indicated that assembly of RCV, comprising F
<sub>1</sub>
/F
<sub>o</sub>
-ATPase, is rapid with little excess subunit synthesis, but that assembly of RCI (
<i>i.e.</i>
NADH dehydrogenase) is far less efficient, with dramatic oversynthesis of numerous proteins, particularly in the matrix-exposed N and Q domains. Unassembled subunits were generally degraded within 3 h. We also observed differential assembly kinetics for individual complexes that were immunoprecipitated with complex-specific antibodies. Immunoprecipitation with an antibody that recognizes the ND1 subunit of RCI co-precipitated a number of proteins implicated in FeS cluster assembly and newly synthesized ubiquinol-cytochrome
<i>c</i>
reductase Rieske iron-sulfur polypeptide 1 (UQCRFS1), the Rieske FeS protein in RCIII, reflecting some coordination between RCI and RCIII assemblies. We propose that pulse-chase SILAC labeling is a useful tool for studying rates of protein complex assembly and degradation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31974161</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>295</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Pulse-chase SILAC-based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes.</ArticleTitle>
<Pagination>
<MedlinePgn>2544-2554</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA119.011791</ELocationID>
<Abstract>
<AbstractText>Mammalian mitochondria assemble four complexes of the respiratory chain (RCI, RCIII, RCIV, and RCV) by combining 13 polypeptides synthesized within mitochondria on mitochondrial ribosomes (mitoribosomes) with over 70 polypeptides encoded in nuclear DNA, translated on cytoplasmic ribosomes, and imported into mitochondria. We have previously observed that mitoribosome assembly is inefficient because some mitoribosomal proteins are produced in excess, but whether this is the case for other mitochondrial assemblies such as the RCs is unclear. We report here that pulse-chase stable isotope labeling with amino acids in cell culture (SILAC) is a valuable technique to study RC assembly because it can reveal considerable differences in the assembly rates and efficiencies of the different complexes. The SILAC analyses of HeLa cells indicated that assembly of RCV, comprising F
<sub>1</sub>
/F
<sub>o</sub>
-ATPase, is rapid with little excess subunit synthesis, but that assembly of RCI (
<i>i.e.</i>
NADH dehydrogenase) is far less efficient, with dramatic oversynthesis of numerous proteins, particularly in the matrix-exposed N and Q domains. Unassembled subunits were generally degraded within 3 h. We also observed differential assembly kinetics for individual complexes that were immunoprecipitated with complex-specific antibodies. Immunoprecipitation with an antibody that recognizes the ND1 subunit of RCI co-precipitated a number of proteins implicated in FeS cluster assembly and newly synthesized ubiquinol-cytochrome
<i>c</i>
reductase Rieske iron-sulfur polypeptide 1 (UQCRFS1), the Rieske FeS protein in RCIII, reflecting some coordination between RCI and RCIII assemblies. We propose that pulse-chase SILAC labeling is a useful tool for studying rates of protein complex assembly and degradation.</AbstractText>
<CopyrightInformation>© 2020 Bogenhagen and Haley.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bogenhagen</LastName>
<ForeName>Daniel F</ForeName>
<Initials>DF</Initials>
<Identifier Source="ORCID">0000-0002-9993-2574</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651 daniel.bogenhagen@stonybrook.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Haley</LastName>
<ForeName>John D</ForeName>
<Initials>JD</Initials>
<Identifier Source="ORCID">0000-0002-0283-6413</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pathology, Stony Brook University, Stony Brook, New York 11794-8691.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Proteomics Center, Stony Brook University, Stony Brook, New York 11794-8691.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>5LDW</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM112790</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C579514">UQCRFS1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.99.3</RegistryNumber>
<NameOfSubstance UI="D009245">NADH Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.99.3</RegistryNumber>
<NameOfSubstance UI="C515075">NADH dehydrogenase subunit 1, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.3.14</RegistryNumber>
<NameOfSubstance UI="D006180">Proton-Translocating ATPases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.1.1.2</RegistryNumber>
<NameOfSubstance UI="D042967">Electron Transport Complex I</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018929" MajorTopicYN="N">Cell Culture Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042967" MajorTopicYN="N">Electron Transport Complex I</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051336" MajorTopicYN="N">Mitochondrial Membranes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069396" MajorTopicYN="N">Mitochondrial Ribosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009245" MajorTopicYN="N">NADH Dehydrogenase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006180" MajorTopicYN="N">Proton-Translocating ATPases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">NADH dehydrogenase</Keyword>
<Keyword MajorTopicYN="Y">mitochondria</Keyword>
<Keyword MajorTopicYN="Y">mitochondrial biogenesis</Keyword>
<Keyword MajorTopicYN="Y">mitochondrial respiratory chain complex</Keyword>
<Keyword MajorTopicYN="Y">oxidative phosphorylation system</Keyword>
<Keyword MajorTopicYN="Y">protein assembly</Keyword>
<Keyword MajorTopicYN="Y">protein dynamics</Keyword>
<Keyword MajorTopicYN="Y">protein synthesis</Keyword>
<Keyword MajorTopicYN="Y">protein turnover</Keyword>
<Keyword MajorTopicYN="Y">proteomics</Keyword>
<Keyword MajorTopicYN="Y">respiratory complex assembly</Keyword>
<Keyword MajorTopicYN="Y">stable isotope labeling with amino acids in cell culture (SILAC)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31974161</ArticleId>
<ArticleId IdType="pii">RA119.011791</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA119.011791</ArticleId>
<ArticleId IdType="pmc">PMC7049976</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Proteomics. 2020 Jan;19(1):65-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31666358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2018 Oct;28(10):1026-1034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30030519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Apr;7(4):312-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2013;82:551-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Sep 5;16(3):378-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22902835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Oct 6;538(7623):123-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27626371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Aug 29;579(21):4892-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16109413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Nov 3;8(1):1287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29097656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Oct 6;167(2):471-483.e10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27693358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2018 May;20(5):528-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29662179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2015 Jan;16(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):2988-2993</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29440398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Sep;6(9):1638-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2018 Oct 22;28(20):R1212-R1219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30352195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1984 Apr;138(1):141-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6731838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2007 May 15;364(2):128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17391635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2018 Oct 19;430(21):3892-3905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29733856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Oct 20;167(3):803-815.e21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27720452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2019;1140:575-583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31347072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5325-E5334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28634302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2018 Nov 23;52:511-533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30230928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 May 11;533(7604):499-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27225121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 Feb 13;22(7):1935-1944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29444443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D1251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26450961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Mar 26;13(6):805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15053874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Aug 18;63(4):621-632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27499296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 Apr 1;19(4):618-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24703694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 29;286(30):26424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2018 Apr;76:163-178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28870773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 6;515(7525):80-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25209663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jun;27(12):4228-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17438127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 19;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2017 Jan 10;25(1):128-139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27720676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Bogenhagen, Daniel F" sort="Bogenhagen, Daniel F" uniqKey="Bogenhagen D" first="Daniel F" last="Bogenhagen">Daniel F. Bogenhagen</name>
</noRegion>
<name sortKey="Haley, John D" sort="Haley, John D" uniqKey="Haley J" first="John D" last="Haley">John D. Haley</name>
<name sortKey="Haley, John D" sort="Haley, John D" uniqKey="Haley J" first="John D" last="Haley">John D. Haley</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000052 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000052 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31974161
   |texte=   Pulse-chase SILAC-based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31974161" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020